基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Feature selection is a crucial problem in efficient machine learning,and it also greatly contributes to the explainability of machine-driven decisions.Methods,like decision trees and Least Absolute Shrinkage and Selection Operator(LASSO),can select features during training.However,these embedded approaches can only be applied to a small subset of machine learning models.Wrapper based methods can select features independently from machine learning models but they often suffer from a high computational cost.To enhance their efficiency,many randomized algorithms have been designed.In this paper,we propose automatic breadth searching and attention searching adjustment approaches to further speedup randomized wrapper based feature selection.We conduct theoretical computational complexity analysis and further explain our algorithms’generic parallelizability.We conduct experiments on both synthetic and real datasets with different machine learning base models.Results show that,compared with existing approaches,our proposed techniques can locate a more meaningful set of features with a high efficiency.
推荐文章
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
构建 SLE 患者 novel microRNA 差异性表达谱及其靶基因的功能分析
系统性红斑狼疮
新小核糖核酸
靶基因
差异性表达
GO 富集
KEGG 通路
化感--外来入侵植物的"Novel Weapons"
化感
外来入侵植物
NW假说
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Novel and Efficient Randomized Algorithms for Feature Selection
来源期刊 大数据挖掘与分析(英文) 学科 工学
关键词 feature selection randomized algorithms efficient selection
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 208-224
页数 17页 分类号 TP181
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
feature
selection
randomized
algorithms
efficient
selection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大数据挖掘与分析(英文)
季刊
2096-0654
10-1514/G2
出版文献量(篇)
91
总下载数(次)
3
总被引数(次)
0
论文1v1指导