基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div>
推荐文章
Spatial characters of nutrients in Wujiangdu Reservoir in karst river, SW China
Wujiangdu Reservoir
Nutrients distribution characteristics
Dam
面向网状信息的Radial+Focus可视化
网状信息
Radial+Focus可视化
先验重要度
交互历史
布局算法
Geochemical distribution, fractionation, and sources of heavy metals in dammed-river sediments: the
Heavy metals
Fractionation
210Pb dating
Smelting and mining activities
Sediment cores
The Longjiang River
基于STAGE的水下战仿真系统研究
作战想定
水下战仿真系统
战术训练
STAGE
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sensitivity Analysis of Radial Basis Function Networks for River Stage Forecasting
来源期刊 软件工程与应用(英文) 学科 数学
关键词 Artificial Neural Networks Backward Chaining Multi-Layer Perceptron Partial Derivative Radial Basis Function Sensitivity Analysis River Stage Forecasting
年,卷(期) 2020,(12) 所属期刊栏目
研究方向 页码范围 327-347
页数 21页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
Neural
Networks
Backward
Chaining
Multi-Layer
Perceptron
Partial
Derivative
Radial
Basis
Function
Sensitivity
Analysis
River
Stage
Forecasting
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用(英文)
月刊
1945-3116
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
885
总下载数(次)
0
总被引数(次)
0
论文1v1指导