基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用深度学习中的卷积神经网络理论,基于单目视觉系统和带有标识物的航天器影像,实现对航天器的三维姿态角、距拍摄点距离和相对拍摄中心偏移量的精准测量.利用机器学习理论实现网络自主学习样本特征,这一方式将大幅降低动态测量的误差.同时,这种测量方式也避免了人工提取特征的复杂过程,实现任意、精准、快速测量,对航天器在组装及发射过程中的姿态估计、距离测算起到关键性作用.
推荐文章
航天器有限时间自适应姿态跟踪容错控制
有限时间控制
非刚体航天器
执行器故障
时变惯量
外界干扰
基于路径规划的挠性航天器姿态自适应控制
挠性航天器
路径规划
特征模型
自适应控制
基于伪控制限制方法的再入航天器自适应控制
再入航天器
伪控制限制
神经网络
自适应
航天器系统级测试现状分析
航天器
系统级测试
现状
发展趋势
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应航天器态势分析系统
来源期刊 宇航总体技术 学科 工学
关键词 卷积神经网络 姿态估计 距离测算
年,卷(期) 2020,(1) 所属期刊栏目 试验与仿真
研究方向 页码范围 56-62
页数 7页 分类号 TL99/V439.5
字数 5372字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨嘉琛 天津大学电气自动化与信息工程学院 17 139 4.0 11.0
2 雷宇田 天津大学电气自动化与信息工程学院 3 0 0.0 0.0
3 满家宝 天津大学电气自动化与信息工程学院 3 0 0.0 0.0
4 奚萌 天津大学电气自动化与信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (46)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
姿态估计
距离测算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
宇航总体技术
双月刊
2096-4080
10-1492/V
大16开
2017
chi
出版文献量(篇)
258
总下载数(次)
3
总被引数(次)
493
论文1v1指导