基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
因果推理正在成为机器学习领域一个越来越受关注的研究热点,现阶段的因果发现主要是在研究某一种假设条件下,基于纯粹的观测数据推断变量之间的因果方向.然而在现实世界中观察到的数据往往是由一些假设生成,使得传统因果推断方法的识别率不高、稳定性较差.针对当前的问题,提出了一种基于神经网络来解决混合数据因果推断的方法.该方法在混合加性噪声模型(ANM-MM)的假设下,使用梯度下降法最优化改进的损失函数得到混合数据的抽象因果分布参数,然后将分布参数看作是原因变量和结果变量之间的隐变量,通过比较原因变量和分布参数之间的HilberSchmidt独立性来确定二元变量的因果方向.在理论上证明了该方法的可行性,并通过实验表明该算法在人工数据和真实数据的表现较传统的IGCI,ANM,PNL,LiNGAM,SLOPE方法具有较好的准确率和稳定性.
推荐文章
分类信息辅助的神经网络联合数据关联算法
JPDA
UKF
数据关联
神经网络
分类
基于混合神经网络的入侵检测技术
SOM
LVQ
异常检测
聚类
分类
基于混合神经网络的电路故障诊断研究
混合神经网络
电路
故障诊断
基于神经网络的数据挖掘算法研究
BP神经网络
支持向量机
核函数
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的混合数据的因果发现
来源期刊 计算机技术与发展 学科 工学
关键词 神经网络 混合加性噪声 因果推断 梯度下降 HilberSchmidt独立性
年,卷(期) 2020,(5) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 26-31
页数 6页 分类号 TP181
字数 5042字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.05.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万亚平 南华大学计算机学院 43 285 6.0 16.0
3 耿家兴 南华大学计算机学院 3 2 1.0 1.0
6 李洪飞 南华大学计算机学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (3)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
混合加性噪声
因果推断
梯度下降
HilberSchmidt独立性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导