基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Obfuscation is rampant in both benign and malicious JavaScript(JS)codes.It generates an obscure and undetectable code that hinders comprehension and analysis.Therefore,accurate detection of JS codes that masquerade as innocuous scripts is vital.The existing deobfuscation methods assume that a specific tool can recover an original JS code entirely.For a multi-layer obfuscation,general tools realize a formatted JS code,but some sections remain encoded.For the detection of such codes,this study performs Deobfuscation,Unpacking,and Decoding(DUD-preprocessing)by function redefinition using a Virtual Machine(VM),a JS code editor,and a python int_to_str()function to facilitate feature learning by the FastText model.The learned feature vectors are passed to a classifier model that judges the maliciousness of a JS code.In performance evaluation,the authors use the Hynek Petrak’s dataset for obfuscated malicious JS codes and the SRILAB dataset and the Majestic Million service top 10,000 websites for obfuscated benign JS codes.They then compare the performance to other models on the detection of DUD-preprocessed obfuscated malicious JS codes.Their experimental results show that the proposed approach enhances feature learning and provides improved accuracy in the detection of obfuscated malicious JS codes.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于JavaScript的动态Web应用系统设计
JavaScript
动态Web
应用系统
通信模块设计
基于JavaScript的面向对象语言特性及其程序设计
JavaScript
面向对象
语言特性
程序设计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deobfuscation,unpacking,and decoding of obfuscated malicious JavaScript for machine learning models detection performance improvement
来源期刊 智能技术学报 学科 工学
关键词 JAVASCRIPT EDITOR PYTHON
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 184-192
页数 9页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
JAVASCRIPT
EDITOR
PYTHON
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导