作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社区检测可以帮助分析及预测整个网络各元素间的交互关系,为了进一步提高社区检测的准确度,论文提出了一种基于node2vec的社区检测方法.该方法首先采用一种二阶的随机游走策略生成一系列线性序列,然后使用Skip-Gram模型去训练特征向量,最后使用聚类算法对训练出的节点特征向量进行聚类,实现社区的划分.该文在具有社区标签的网络中进行了实验,从实验中验证了这种思想的可行性,从而取得了显著的效果.
推荐文章
基于LDA和word2vec的英文作文跑题检测
作文跑题检测
向量空间模型
潜在狄利克雷分配
词语间语义关系
基于Node2 vec的改进算法的研究
数据挖掘
随机游走
节点表示
多标签分类
KEC:基于cw2vec的中文专利关键词提取方法
中文专利
词向量
关键词提取
词聚类
基于word2vec的跨领域情感分类方法
语义特征
共现特征
词向量
跨领域情感分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于node2vec的社区检测方法
来源期刊 计算机与数字工程 学科 工学
关键词 社区检测 node2vec 聚类算法
年,卷(期) 2020,(2) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 403-408
页数 6页 分类号 TP393
字数 5104字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.02.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王慧雪 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (41)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社区检测
node2vec
聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导