基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
YOLOv3是一种单步目标检测算法,不需要产生区域候选网络(RPN)来提取目标信息,相对于双步目标检测算法具有更快的检测速度.但是,现有算法在小目标检测上存在精度不高和漏检现象的问题,为此提出了一种基于YOLOv3算法的训练集优化和图层处理的检测方法.首先在标准数据集VOC2007+2012和自建的举手行为数据集上采用K-means算法做聚类分析,以得到适应数据集训练尺寸的anchor大小;然后通过调整训练参数及选择合理的标签标注方式进行训练;最后对输入图像进行图层处理并进行目标检测.实验结果表明,聚类分析后VOC2007验证集的平均准确度(mAP)提高了1.4%,并有效解决了原算法在检测过程中较高卷积层上感受野小的问题,从而使YOLOv3算法在小目标物体的检测上精度提高,漏检率也相对下降.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于YOLOv3算法的训练集优化和检测方法的研究
来源期刊 计算机工程与科学 学科 工学
关键词 YOLOv3 anchor 小目标检测 聚类分析
年,卷(期) 2020,(1) 所属期刊栏目 图形与图像
研究方向 页码范围 103-109
页数 7页 分类号 TP391.4
字数 4323字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.01.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘剑飞 河北工业大学电子信息工程学院 68 193 8.0 10.0
2 郝禄国 广东工业大学信息工程学院 27 86 5.0 8.0
3 高星 河北工业大学电子信息工程学院 7 12 2.0 2.0
4 董琪琪 河北工业大学电子信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (470)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
YOLOv3
anchor
小目标检测
聚类分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导