基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(Support vector machine,SVM)作为一种经典的分类方法,已经广泛应用于各种领域中.然而,标准支持向量机在分类决策中面临以下问题:(1)未考虑分类数据的分布特征;(2)忽略了样本类别间的相对关系;(3)无法解决大规模分类问题.鉴于此,提出融合数据分布特征的保序学习机(Rank preservation learning machine based on data distribution fusion,RPLM-DDF).该方法通过引入类内离散度表征数据的分布特征;通过各类样本数据中心位置相对不变保证全局样本顺序不变;通过建立所提方法和核心向量机对偶形式的等价性解决了大规模分类问题.在人工数据集、中小规模数据集和大规模数据集上的比较实验验证所提方法的有效性.
推荐文章
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
极限学习机类不平衡数据学习算法研究
极限学习机
类不平衡数据学习
支持向量机
AdaBoost
基于流形判别分析的全局保序学习机
全局保序
大规模分类
流形判别分析
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合数据分布特征的保序学习机
来源期刊 数据采集与处理 学科 工学
关键词 类内离散度 支持向量机 大规模数据集 全局保序 核心向量机
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 431-440
页数 10页 分类号 TP181
字数 3933字 语种 中文
DOI 10.16337/j.1004-9037.2020.03.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘忠宝 中北大学软件学院 58 141 6.0 8.0
2 党建飞 中北大学软件学院 2 0 0.0 0.0
3 张志剑 中北大学软件学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (1942)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(9)
  • 参考文献(1)
  • 二级参考文献(8)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(8)
  • 参考文献(7)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
类内离散度
支持向量机
大规模数据集
全局保序
核心向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家社会科学基金
英文译名:Philosophy and Social Science Foundation of China
官方网址:http://www.npopss-cn.gov.cn/
项目类型:重点项目
学科类型:马列·科社
论文1v1指导