基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前IT招聘信息分类中传统算法存在长距离依赖,且无法突出IT岗位关键词对文本分类特征影响等问题.本文通过训练双向长短期记忆网络BiLSTM与注意力机制相结合的多层文本分类模型,将其应用到招聘信息分类中.该模型包括One-hot词向量输入层、BiLSTM层、注意力机制层和输出层.其中One-hot层构建招聘词典,节省了大量训练词向量时间,BiLSTM层可获取更多上下文不同距离的语义信息,注意力机制层对经过BiLSTM层编码数据进行加权转变可提升序列化学习任务.实验表明:基于该模型的IT招聘信息分类准确率达到93.36%,与其他模型对比,提高约2%.该模型更有针对性的分析不同岗位对就业者能力的要求,实现了不同岗位招聘信息的分类,对高校毕业生就业指导有重要意义.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
基于动态掩蔽注意力机制的事件抽取
事件抽取
注意力机制
多事件抽取
动态掩蔽注意力
视觉注意力机制在货运列车车号定位中的应用
眼动跟踪
车号定位
视觉注意力
显著性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 注意力机制的BiLSTM模型在招聘信息分类中的应用
来源期刊 计算机系统应用 学科
关键词 招聘信息 文本分类 One-hot BiLSTM模型 注意力机制
年,卷(期) 2020,(4) 所属期刊栏目 研究开发
研究方向 页码范围 242-247
页数 6页 分类号
字数 4310字 语种 中文
DOI 10.15888/j.cnki.csa.007364
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘理虎 太原科技大学计算机科学与技术学院 95 287 10.0 12.0
3 张英俊 太原科技大学计算机科学与技术学院 63 275 9.0 13.0
6 吕飞亚 太原科技大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (41)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
招聘信息
文本分类
One-hot
BiLSTM模型
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导