基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对Web攻击流量检测问题,提出一种基于动态自适应池化算法(Dynamic Adaptive Pooling Algorithm,DAPA)的卷积神经网络模型.首先将数据集中每一条请求流量进行剪裁、对齐、补足等操作,生成一系列50 ×150 的矩阵数据 A作为输入,然后搭建基于动态自适应的卷积神经网络模型去进行异常流量检测,使之可以根据特征图的不同,动态地调整池化过程,在网络结构中添加Dropout层来解决流量特征提取过程中的过拟合问题.实验表明,该方法比未使用动态自适应池化的方式精确度提升了1.2%,损失值降低了2.6%,过拟合问题也得到了解决.
推荐文章
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
多任务卷积神经网络
螺栓异常
图像对比
基于马尔科夫模型和卷积神经网络的异常数据检测方法
异常检测
马尔科夫模型
卷积神经网络
多维数据
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DAPA的卷积神经网络Web异常流量检测方法
来源期刊 信息技术与网络安全 学科 工学
关键词 异常流量检测 卷积神经网络 动态自适应池化
年,卷(期) 2020,(2) 所属期刊栏目 ITNS主题专栏:网络安全防护技术
研究方向 页码范围 8-12
页数 5页 分类号 TP393
字数 3167字 语种 中文
DOI 10.19358/j.issn.2096-5133.2020.02.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李世明 哈尔滨师范大学计算机科学与信息工程学院 24 55 5.0 6.0
3 於家伟 哈尔滨师范大学计算机科学与信息工程学院 4 0 0.0 0.0
6 李秋月 哈尔滨师范大学计算机科学与信息工程学院 4 0 0.0 0.0
7 高胜花 哈尔滨师范大学计算机科学与信息工程学院 3 0 0.0 0.0
8 郑爱勤 哈尔滨师范大学计算机科学与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (69)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(19)
  • 参考文献(0)
  • 二级参考文献(19)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(14)
  • 参考文献(1)
  • 二级参考文献(13)
2017(10)
  • 参考文献(0)
  • 二级参考文献(10)
2018(8)
  • 参考文献(2)
  • 二级参考文献(6)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常流量检测
卷积神经网络
动态自适应池化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导