基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在目标跟踪系统中,获得目标的良好表征是确定目标跟踪性能的关键,因此提出一种基于相关滤波和卷积神经网络的目标跟踪算法;该算法首先在各视频场景内预先选定可清晰区分目标外观的参考区域块用以构造训练样本,并构建了两路不完全对称但权值共享的卷积神经网络;该卷积神经网络使得参考区域外目标的输出特征尽可能与参考区域内目标的输出特征相似,以便于获得参考区域内目标的良好表征,并在其中一路加入了相关滤波模块,实现了卷积网络与相关滤波的结合;实验结果验证了该算法的可行性.
推荐文章
结合高斯核函数的卷积 神经网络跟踪算法
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于STF滤波的神经网络算法
数据融合
神经网络
卡尔曼滤波
强跟踪滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相关滤波和卷积神经网络的目标跟踪算法
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 相关滤波 卷积神经网络 目标跟踪 傅里叶
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 19-24
页数 6页 分类号 TP391
字数 4496字 语种 中文
DOI 10.16055/j.issn.1672-058X.2020.0001.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李昕 安徽理工大学电气与信息工程学院 17 61 4.0 7.0
2 王雪丽 安徽理工大学电气与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (48)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
相关滤波
卷积神经网络
目标跟踪
傅里叶
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导