原文服务方: 华侨大学学报(自然科学版)       
摘要:
针对视觉跟踪中运动目标鲁棒性跟踪问题,结合高斯核函数和卷积神经网络(CNN),提出一种无需训练的卷积神经网络提取深度特征的视觉跟踪算法.首先,对初始图像进行归一化处理并聚类提取目标信息,结合跟踪过程中目标信息共同作为卷积网络结构中的各阶滤波器;其次,通过高斯核函数来提高卷积运算速度,提取目标简单抽象特征;最后,通过叠加简单层的卷积结果得到目标的深层次表达,并结合粒子滤波跟踪框架实现跟踪.结果表明:简化后的卷积网络结构能够有效地应对低分辨率、目标遮挡与形变等场景,提高复杂背景下的跟踪效率.
推荐文章
高斯核函数卷积神经网络跟踪算法
视觉跟踪
深度学习
卷积神经网络
高斯核函数
前景目标
背景信息
模板匹配
粒子滤波
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合高斯核函数的卷积 神经网络跟踪算法
来源期刊 华侨大学学报(自然科学版) 学科
关键词 视觉跟踪 卷积神经网络 高斯核函数 粒子滤波
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 762-767
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201702123
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑凌云 华侨大学后勤与资产管理处 6 7 2.0 2.0
2 柳培忠 华侨大学工学院 34 121 7.0 8.0
3 汪鸿翔 华侨大学工学院 9 45 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (376)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导