基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了降低支持向量机(support vector machine,SVM)参数对定位精度的影响和降低其他优化算法优化参数易陷入局部最优解的风险,提出了一种基于人工蜂群算法(artificial bee colony,ABC)优化SVM的室内定位方法.在离线阶段通过射线跟踪技术生成RSSI仿真环境数据集,通过支持向量机构建RSSI与位置坐标的非线性映射模型,通过人工蜂群算法优化模型参数,得到最优模型;在线阶段,通过该模型对待定位点进行位置预测.首先将ABC-SVM定位方法与未经参数优化的SVM进行定位误差对比实验,结果表明,ABC-SVM在2 m内的定位精度达到86%,具有更高的定位精度;将ABC优化算法再与传统的ACO、PSO优化算法进行累积误差概率对比实验,结果表明,ABC-SVM算法在定位误差小于2 m的概率达到了90%.
推荐文章
基于ABC-SVM的软基沉降预测研究
支持向量机
人工蜂群
软土地基
沉降预测
基于SVM分类和回归的WiFi室内定位方法
支持向量机
室内定位
区域划分
分类
回归
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
基于WiFi的室内定位算法的研究
无线保真
位置指纹定位技术
匹配算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ABC-SVM的室内定位方法研究
来源期刊 北京信息科技大学学报(自然科学版) 学科 工学
关键词 支持向量机 人工蜂群算法 室内定位 定位误差 累积误差概率
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 33-37
页数 5页 分类号 TP391
字数 3363字 语种 中文
DOI 10.16508/j.cnki.11-5866/n.2020.02.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔英花 北京信息科技大学信息与通信工程学院 23 18 3.0 3.0
2 孟国华 北京信息科技大学信息与通信工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (13)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(11)
  • 参考文献(2)
  • 二级参考文献(9)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
人工蜂群算法
室内定位
定位误差
累积误差概率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京信息科技大学学报(自然科学版)
双月刊
1674-6864
11-5866/N
大16开
北京市
1986
chi
出版文献量(篇)
2043
总下载数(次)
10
总被引数(次)
11074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导