基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着网络信息文本的爆发式增长,人们从繁多的新闻中获取特定有效的信息变得愈发困难.在大数据处理中,学者们经常使用文本聚类方法作为新闻主题提取和趋势跟踪的主要措施.针对凝聚型层次聚类算法和K-Means算法在文本聚类上的优势和缺陷,提出一种新的新闻文本聚类优化处理算法——QH-K(K-Means based on Quick Hierarchical Clustering)算法.首先,通过word2vector模型训练文本得到词向量;其次,采用优化的凝聚型层次聚类算法对文本聚类,并根据优化处理算法所提出聚类有效性指标ST得到初始聚类个数和聚类中心;最后,引入K-Means算法对聚类结果进行优化,提高最终聚类的效果.实验证明,QH-K聚类优化处理算法的正确率、召回率、F值相比传统算法都得到了一定程度的提升;此外,算法的运行时间也有所下降.
推荐文章
基于全覆盖粒计算的K-medoids文本聚类算法
文本聚类
K.medoids
全覆盖粒计算
Single.Pass
聚类中心
最大最小距离
密度
基于K均值和aiNet的两阶段文本聚类算法
文本聚类
向量空间模型
人工免疫网
k均值聚类算法
基于增强蜂群优化与 K-means 的文本聚类算法
蜂群算法
公平操作
克隆操作
多样性
局部提炼
文本聚类
词共现文本主题聚类算法
词共现
关联规则
数据挖掘
层次聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 QH-K:面向新闻文本主题抽取的改进H-K聚类算法
来源期刊 南京邮电大学学报(自然科学版) 学科 工学
关键词 文本聚类 凝聚型层次聚类 K-Means
年,卷(期) 2020,(1) 所属期刊栏目 计算机与自动控制
研究方向 页码范围 82-88
页数 7页 分类号 TP391.1
字数 5920字 语种 中文
DOI 10.14132/j.cnki.1673-5439.2020.01.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王永利 南京理工大学计算机科学与工程学院 45 174 8.0 11.0
2 冯霞 南京理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (42)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本聚类
凝聚型层次聚类
K-Means
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京邮电大学学报(自然科学版)
双月刊
1673-5439
32-1772/TN
大16开
南京市亚芳新城区文苑路9号
1960
chi
出版文献量(篇)
2234
总下载数(次)
13
总被引数(次)
14649
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导