基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高维数据下的聚类效果需要提高,提出一种基于期望最大化的k-means聚类改进算法.该算法在没有降维和破坏原有数据结构的情况下,把期望最大化算法和k-means算法相结合,用期望最大化算法选取k-means的算法的初始聚类中心.并针对高维数据提出一种新的距离算法,代替传统的距离算法.实验结果表明提出的算法的可行性,并且在处理高维数据时的有效性.
推荐文章
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于期望最大化的K-Means聚类算法
来源期刊 辽宁大学学报(自然科学版) 学科 工学
关键词 高维数据 期望最大化 k-means聚类1
年,卷(期) 2020,(2) 所属期刊栏目 信息科学与技术
研究方向 页码范围 106-111
页数 6页 分类号 TP311
字数 3515字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 景源 辽宁大学信息学院 8 15 3.0 3.0
2 郝金山 辽宁大学信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (99)
共引文献  (51)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(19)
  • 参考文献(4)
  • 二级参考文献(15)
2017(12)
  • 参考文献(7)
  • 二级参考文献(5)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高维数据
期望最大化
k-means聚类1
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁大学学报(自然科学版)
季刊
1000-5846
21-1143/N
大16开
沈阳市皇姑区崇山中路66号
8-147
1974
chi
出版文献量(篇)
1909
总下载数(次)
2
总被引数(次)
9019
论文1v1指导