基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现航天用电子元器件的全自动及非接触识别,并减少由照明系统造成的图像亮度不均、偏色等问题对检测结果的影响,通过结合局部、区域和总体三个层次特征提升物体检测精度,提出了一种基于多特征图像增强深度卷积神经网络(MFIE-DCNN)的航天用电子元器件分类算法.MFIE-DCNN算法包含多特征学习和深度学习,其学习过程类似于人类视觉系统,能够对形状、方向和颜色特征进行深度挖掘,突出元器件边界信息,抑制背景杂波干扰.实验结果表明,该算法能够区分电路板板载元器件的种类,检测准确度优于传统算法.对比基于稀疏自动编码器的深度神经网络,检测结果提高了近20%.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征图像增强深度卷积神经网络的航天用电子元器件分类算法
来源期刊 导航与控制 学科 工学
关键词 深度学习 卷积神经网络 电路板板载元器件 图像空间变换
年,卷(期) 2020,(2) 所属期刊栏目 信息与人工智能
研究方向 页码范围 112-119
页数 8页 分类号 TP181
字数 3910字 语种 中文
DOI 10.3969/j.issn.1674-5558.2020.02.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李威 2 2 1.0 1.0
2 张文亮 2 2 1.0 1.0
3 蔡立明 3 2 1.0 1.0
7 高永发 1 0 0.0 0.0
8 张玉强 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (90)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(8)
  • 参考文献(3)
  • 二级参考文献(5)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(14)
  • 参考文献(5)
  • 二级参考文献(9)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
电路板板载元器件
图像空间变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
导航与控制
双月刊
1674-5558
11-5804/V
大16开
北京142信箱403分箱
2002
chi
出版文献量(篇)
1092
总下载数(次)
2
总被引数(次)
1531
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导