作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm improves the situation in theoretically but not performs well as expected in practical for the workload of nodes identification and the existence of many short blocks. Meanwhile, Neural network (NN) based decoders have appeared as potential candidates to replace conventional decoders for polar codes. But the exponentially increasing training complexity with information bits is unacceptable which means it is only suitable for short codes. In this paper, we present an improvement that increases decoding efficiency without degrading the error-correction performance. The long polar codes are divided into several sub-blocks, some of which can be decoded adopting fast maximum likelihood decoding method and the remained parts are replaced by several short codes NN decoders. The result shows that time steps the proposed algorithm need only equal to 79.8% of fast simplified successive-cancellation decoders require. Moreover, it has up to 21.2 times faster than successive-cancellation decoding algorithm. More importantly, the proposed algorithm decreases the hardness when applying in some degree. </div>
推荐文章
一种带有交织器的Polar码串行级联算法研究
Polar码
LDPC码
交织器
串行级联
信道编码
译码性能
Viterbi Decoder ACS单元中路径度量值存储空间的优化
卷积码
Viterbi Decoder
ACS单元
路径度量
分支度量
幸存路径
回溯
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding
来源期刊 电脑和通信(英文) 学科 数学
关键词 Polar Codes Decoding Latency Fast Simplified Successive-Cancellation Decoding (Fast-SSC) Neural Network (NN)
年,卷(期) 2020,(7) 所属期刊栏目
研究方向 页码范围 90-99
页数 10页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Polar
Codes
Decoding
Latency
Fast
Simplified
Successive-Cancellation
Decoding
(Fast-SSC)
Neural
Network
(NN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导