基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
工程应用中的时间序列多为非线性、非平稳序列,直接对其进行预测难度较大.本研究通过经验模态分解算法将原始时间序列分解为多个相对平稳,并具有不同特征尺度的本征模态函数及趋势项,在一定程度上降低时间序列的复杂程度;同时,在预测过程中,针对递归神经网络模型难以训练及梯度消失等问题,引入长短期记忆网络算法.利用长短期记忆网络算法对分解的本征模态函数分量及趋势项进行分别预测,叠加预测结果得到最终预测结果.以中国北京市PM2.5浓度为例进行预测分析,并将本预测算法与单一预测算法进行比较,结果表明,所提方法具有更高的模型预测精度,达到预测要求.
推荐文章
基于EMD-LSTM的光伏发电预测模型
光伏发电
出力预测
经验模态分解
长短期记忆神经网络
气象因素
基于EMD-LSTM耦合预测模型的BDS多路径误差削弱方法研究
北斗导航卫星系统
多路径误差
经验模态分解
长短期记忆网络
基于EMD的BP神经网络海水温度时间序列预测研究
经验模态分解
BP神经网络
海水温度时间序列预测
非平稳性序列
基于EMD和Elman网络的人民币汇率时间序列预测
时间序列
汇率预测
经验模态分解
Elman网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD-LSTM的时间序列预测方法
来源期刊 深圳大学学报(理工版) 学科 社会科学
关键词 数理统计学 时间序列预测 经验模态分解 长短期记忆网络 PM2.5 机器学习 时间序列分解
年,卷(期) 2020,(3) 所属期刊栏目 数学与应用数学
研究方向 页码范围 265-270
页数 6页 分类号 C81
字数 3901字 语种 中文
DOI 10.3724/SP.J.1249.2020.03265
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 戴洪德 海军航空大学航空基础学院 63 224 8.0 12.0
2 戴邵武 海军航空大学岸防兵学院 89 376 9.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (49)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数理统计学
时间序列预测
经验模态分解
长短期记忆网络
PM2.5
机器学习
时间序列分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
深圳大学学报(理工版)
双月刊
1000-2618
44-1401/N
大16开
深圳市南山区深圳大学行政楼419室
46-206
1984
chi
出版文献量(篇)
1946
总下载数(次)
10
总被引数(次)
10984
论文1v1指导