基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于改进粒子群算法和支持向量机的滚动轴承故障诊断方法.首先分析基本粒子群算法的不足及其关键参数,提出多方面改进的粒子群算法,利用10种基准测试函数对比多种粒子群算法,证明该改进算法的优势.然后结合支持向量机,建立滚动轴承故障诊断模型,并提取滚动轴承振动信号的时域、频域、小波包节点能量和CEEMDAN分量排列熵四种特征,构成单一特征和组合特征作为诊断模型的输入特征向量.最后利用凯斯西储大学滚动轴承数据进行验证,并与网格算法、遗传算法和多种不同粒子群算法进行对比.试验证明,本改进粒子群算法优化支持向量机模型在滚动轴承故障诊断中更具优势.
推荐文章
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于最小二乘映射和SVM的滚动轴承故障诊断
故障诊断
LSM
SVM
无量纲特征参量
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
基于DE-LSSVM的滚动轴承故障诊断
集合经验模式分解
能量熵
差分进化算法
最小二乘支持向量机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进PSO优化SVM的滚动轴承故障诊断
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 滚动轴承 故障诊断 改进粒子群算法 支持向量机
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 333-340
页数 8页 分类号 TH133.33
字数 5326字 语种 中文
DOI 10.7631/issn.1000-2243.19203
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张丽萍 福州大学机械工程及自动化学院 43 260 9.0 15.0
2 吴宁钰 福州大学机械工程及自动化学院 2 0 0.0 0.0
3 石志炜 福州大学机械工程及自动化学院 3 0 0.0 0.0
4 钟成豪 福州大学机械工程及自动化学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (109)
共引文献  (132)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(22)
  • 参考文献(1)
  • 二级参考文献(21)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
改进粒子群算法
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导