基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对遥感图像分类中数据集小以及数据集无标签等问题,利用深度迁移学习的思想,将迁移学习方法应用于神经网络训练中,以实现对遥感图像数据进行特征提取及分类.本文结合残差网络(RTN)和深度相关对齐方法(CORAL)将Alexnet模型迁移至遥感图像分类问题中,使得学习到的特征不仅具有可分类性,同时具备域不变性.通过与Deep CORAL和RTN算法对比,本文提出的算法具有更好的迁移效果.
推荐文章
一种应用于图像配准中的点特征匹配算法
点特征匹配
松弛算法
马氏距离
仿射几何变换
一种基于深度学习的遥感图像分类及农田识别方法
遥感图像分类
农田识别
深度学习
卷积神经网络
识别模型
网络训练
一种应用于乳腺图像处理的胸墙检测算法
图像处理
胸墙检测
域值分割
影像系统
一种改进的自适应图像颜色迁移算法
图像处理
颜色迁移
颜色空间
图像融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种应用于遥感图像分类的迁移学习算法
来源期刊 网络新媒体技术 学科
关键词 迁移学习 深度神经网络 残差网络 深度相关对齐
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 31-36
页数 6页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (188)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
深度神经网络
残差网络
深度相关对齐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络新媒体技术
双月刊
2095-347X
10-1055/TP
大16开
北京海淀区北四环西路21号
2-304
1980
chi
出版文献量(篇)
3082
总下载数(次)
5
论文1v1指导