基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The structure of any Bangla numerical character is more complex compared to English numerical character. Two pairs of numerical character in Bangla resembles to be closed and they are: “one and nine” and “five and six”. We found that, handwritten Bangla numerical character cannot be recognized using single machine learning algorithm or discrete wavelet transform (DWT). Above phenomenon motivated us to use combination of DWT, Fuzzy Inference System (FIS) and Principal Component Analysis (PCA) to recognize numerical characters of Bangla in handwritten format. The four lowest spectral components of a preprocessed image are taken using DWT, which is considered as the feature vector to recognize the digits in first phase. The feature vector is then applied to FIS and PCA separately. The combined method provides recognition accuracy of 95.8% whereas application of individual method gives less rate of accuracy. Instead of storing the images itself in a folder, if we can store the feature vector of images achieved from DWT in tabular form. The records of table can be applied in FIS, PCA or other object detection algorithm. Although the technique used in the paper can detect objects with moderate rate of accuracy but can save huge storage against a benchmark database of images. If a tradeoff is made between storage requirements and accuracy of recognition, the model of the paper is preferable compared to other present state-of-art. Another finding of the paper is that, the spectral components of images acquired by DWT only matched with FIS and PCA for classification but do not match properly with unsupervised (K-mean clustering) and supervised (support vector machine) learning.
推荐文章
基于分块的DWT和PCA图像水印算法
图像水印
分块
离散小波DWT
主成分分析PCA
鲁棒性
基于PCA和DWT的强鲁棒数字水印算法
数字水印
离散小波变换(DWT)
主成分分析(PCA)
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Recognition of Bangla Handwritten Number Using Combination of PCA and FIS with the Aid of DWT
来源期刊 电脑和通信(英文) 学科 工学
关键词 Spectral Components Recognition Accuracy DE-NOISING Thinning Scheme Principal Components
年,卷(期) 2020,(9) 所属期刊栏目
研究方向 页码范围 109-125
页数 17页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Spectral
Components
Recognition
Accuracy
DE-NOISING
Thinning
Scheme
Principal
Components
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导