基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful approach in wheat breeding providing efficient crop varieties. This article presents multivariate cluster and principal component analyses (PCA) of some yield traits of wheat, such as thousand-kernel weight (TKW), grain number, grain yield and plant height. Based on the results, an evaluation of economically valuable attributes by eigenvalues made it possible to determine the components that significantly contribute to the yield of common wheat genotypes. Twenty-five genotypes were grouped into four clusters on the basis of average linkage. The PCA showed four principal components (PC) with eigenvalues ></span><span style="font-family:""> </span><span style="font-family:Verdana;">1, explaining approximately 90.8% of the total variability. According to PC analysis, the variance in the eigenvalues was </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">greatest (4.33) for PC-1, PC-2 (1.86) and PC-3 (1.01). The cluster analysis revealed the classification of 25 accessions into four diverse groups. Averages, standard deviations and variances for clusters based on morpho-physiological traits showed that the maximum average values for grain yield (742.2), biomass (1756.7), grains square meter (18</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">373.7), and grains per spike (45.3) were higher in cluster C compared to other clusters. Cluster D exhibited the maximum thousand-kernel weight (TKW) (46.6).
推荐文章
The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal
Hydrogeochemistry
Thermal waters
Multivariate statistical analysis
Silica geothermometers
Mixing models
Cold groundwaters
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multivariate Cluster and Principle Component Analyses of Selected Yield Traits in Uzbek Bread Wheat Cultivars
来源期刊 美国植物学期刊(英文) 学科 农学
关键词 Bread Wheat Principal Component Analysis Dispersion Cluster Analysis Grain Yield Spike Number Per Square Meter Drought Stress Thousand-Kernel Weight
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 903-912
页数 10页 分类号 S51
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Bread
Wheat
Principal
Component
Analysis
Dispersion
Cluster
Analysis
Grain
Yield
Spike
Number
Per
Square
Meter
Drought
Stress
Thousand-Kernel
Weight
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国植物学期刊(英文)
月刊
2158-2742
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1814
总下载数(次)
0
总被引数(次)
0
论文1v1指导