基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度卷积神经网络中存在的过拟合问题,本文提出了一种确定性连接丢弃的正则化方法.核心思想是根据不同卷积滤波器权重对结果的贡献度不同,确定性丢弃卷积层层间连接,通过降低卷积滤波器权重的空间维度,使得卷积神经网络各层之间的连接更稀疏.通过将算法应用于图像分类任务来验证算法的性能,在MNIST、CIFAR-10和CIFAR-100数据集上,错误率分别为0.32%、5.33%、26.88%,相比于原始实验错误率分别降低0.15%、1.09%、1.36%.实验表明,本算法能够有效处理深度卷积神经网络的过拟合问题,并能提升网络的鲁棒性和泛化能力.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
随机丢弃和批标准化的深度卷积神经网络柴油机失火故障诊断
失火故障诊断
深度卷积神经网络
噪声环境
随机丢弃
批标准化
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向深度卷积神经网络的确定性连接丢弃算法
来源期刊 陕西师范大学学报(自然科学版) 学科 工学
关键词 深度学习 卷积神经网络 正则化 连接丢弃
年,卷(期) 2020,(2) 所属期刊栏目 人工智能专题
研究方向 页码范围 32-37
页数 6页 分类号 TP391.4
字数 5601字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何宇清 天津大学电气自动化与信息工程学院 37 197 9.0 12.0
2 庞彦伟 天津大学电气自动化与信息工程学院 29 148 8.0 10.0
3 潘静 天津大学电气自动化与信息工程学院 16 60 5.0 7.0
7 李鸿杨 天津大学电气自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
正则化
连接丢弃
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导