基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文以西昌台阵观测的8321次近震数据为例,详细介绍了利用深度卷积神经网络检测地震的数据处理流程,包括数据预处理、模型训练、波形长度、网络层数、学习率和概率阈值等关键参数对检测结果的影响,并将训练得到的最优模型,应用于事件波形和连续波形的检测.研究表明,数据预处理和数据增强可以提升模型的检测精度和抗干扰能力.用于模型训练的波形窗口长度可近似于S-P到时差的最大值.不同网络层数(5—8层)的检测结果差别不大.对于地震检测,学习率设为10?4—10?3较为合适.卷积神经网络检测出的地震数量与选择的概率阈值有关,通过绘制精确率-召回率变化曲线,可以为选择合适的概率阈值提供参考.本文为进一步利用深度学习算法提高地震检测效果提供了参考.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
利用稀疏语义结合双层深度卷积神经网络的敏感图像检测方法
敏感图像内容检测
双层卷积神经网络
深度学习算法
稀疏语义表示
视觉词袋
皮肤检测器
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用卷积神经网络检测地震的方法与优化
来源期刊 地震学报 学科
关键词 深度学习 卷积神经网络 地震检测 模型训练 西昌台阵
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 669-683
页数 15页 分类号 P315.61
字数 语种 中文
DOI 10.11939/jass.20200045
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (119)
共引文献  (16)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(6)
  • 参考文献(1)
  • 二级参考文献(5)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(4)
  • 参考文献(1)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(8)
  • 参考文献(1)
  • 二级参考文献(7)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(8)
  • 参考文献(5)
  • 二级参考文献(3)
2019(13)
  • 参考文献(9)
  • 二级参考文献(4)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
地震检测
模型训练
西昌台阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地震学报
双月刊
0253-3782
11-2021/P
16开
北京市海淀区民族大学南路5号(北京8116信箱)
1979
chi
出版文献量(篇)
2104
总下载数(次)
1
总被引数(次)
39759
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导