基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
For a given class of modules A,let (A) be the class of exact complexes having all cycles in A,and dw(A) the class of complexes with all components in A.Denote by (G)I the class of Gorenstein injective R-modules.We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic;every exact complex of Gorenstein injective modules is in (G)(I);every complex in dw((G)I) is dg-Gorenstein injective.The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings.If the ring is n-perfect for some integer n ≥ 0,the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules.We also prove the following characterization of Gorenstein rings.Let R be a commutative coherent ring;then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules;(2) every exact complex of flat modules is F-totally acyclic,and every R-module M such that M+ is Gorenstein flat is Ding injective;(3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective.If R has finite Krull dimension,statements (1)-(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).
推荐文章
强Gorenstein弱内射模
Gorenstein弱内射模
强Gorenstein弱内射模
直和项
几乎优化扩张和Gorenstein同调维数
几乎优化扩张
Gorenstein投射
Gorenstein同调维数
Gorenstein fp-投射模和Gorenstein fp-内射模
Gorenstein fp-投射模
Gorenstein fp-内射模
同调
关于Gorenstein AC-余挠模
Gorenstein AC-余挠模
Gorenstein AC-平坦模
弱余挠模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Acyclic Complexes and Gorenstein Rings
来源期刊 代数集刊(英文版) 学科
关键词
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 575-586
页数 12页 分类号
字数 语种 英文
DOI 10.1142/S1005386720000474
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
代数集刊(英文版)
季刊
1005-3867
11-3382/O1
北京中关村中科院数学所
eng
出版文献量(篇)
706
总下载数(次)
0
总被引数(次)
1078
论文1v1指导