基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前利用机器学习方法预测锂离子电池健康状态(SOH)存在的训练时间长和预测精度低的问题,本文提出了一种基于改进型极限学习机(ELM)的SOH预测模型.首先利用灰色关联分析法选取出健康因子(HI)并将其作为模型的输入.然后通过自适应粒子群优化(APSO)算法对多层极限学习机(ML-ELM)的输入权重和隐层偏置进行了优化.最后利用NASA的3组锂离子电池数据对所提出的模型进行验证,并且与其他机器学习算法进行了比较.仿真实验结果表明,本文提出的APSO-ML-ELM算法的预测结果的RMSE小于2%并且MAPE小于1%,训练时间也相对更短.
推荐文章
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
基于数据驱动的卫星锂离子电池寿命预测方法
锂离子电池
寿命预测
数据驱动
基于改进极限学习机的微信热点预测
微信热点
预测模型
极限学习机
验证性测试
权值更新
基于扩展卡尔曼滤波的锂离子电池寿命预测方法
扩展卡尔曼滤波
最优局部加权回归平滑
锂离子电池
寿命预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进型极限学习机的锂离子电池健康状态预测
来源期刊 电子器件 学科 工学
关键词 锂离子电池 健康状态 极限学习机 自适应粒子群优化(APSO)
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 579-584
页数 6页 分类号 TM912
字数 4350字 语种 中文
DOI 10.3969/j.issn.1005-9490.2020.03.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施梦琢 陕西科技大学电气与控制工程学院 2 0 0.0 0.0
2 洪元涛 陕西科技大学电气与控制工程学院 2 0 0.0 0.0
3 欧阳 陕西科技大学电气与控制工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (17)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(13)
  • 参考文献(2)
  • 二级参考文献(11)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
健康状态
极限学习机
自适应粒子群优化(APSO)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子器件
双月刊
1005-9490
32-1416/TN
大16开
南京市四牌楼2号
1978
chi
出版文献量(篇)
5460
总下载数(次)
21
总被引数(次)
27643
论文1v1指导