钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
大学学报期刊
\
郑州大学学报(工学版)期刊
\
基于全矢-CNN的轴承故障诊断研究
基于全矢-CNN的轴承故障诊断研究
作者:
付耀琨
孙浩
李伟
郝旺身
陈耀
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
故障诊断
全矢谱
深度学习
卷积神经网络
滚动轴承
摘要:
针对传统智能故障诊断系统需要大量先验知识,以及模型复杂度高和单通道信号不完整造成信息遗漏的问题,将全矢谱技术与卷积神经网络(CNN)结合,提出一种新的滚动轴承的故障诊断模型.该方法将全矢谱技术与深度卷积神经网络结合,相比于单通道数据建立的模型而言,具有特征信息完整、模型适应性强等优点.首先利用全矢谱技术对采集的双通道信号进行信息融合,得到融合后的主振矢数据.然后结合主振矢数据与深度学习算法构建全矢深度卷积神经网络,模型能够自适应地提取故障特征,利用反向传播算法调节优化模型参数.实验结果表明:该方法能够提取更加完整的轴承故障信息,该模型具有更高的准确率和更好的稳定性.
暂无资源
收藏
引用
分享
推荐文章
全矢深度学习在轴承故障诊断中的应用
智能故障诊断
深度学习
全矢谱
稀疏自动编码器
基于MWT和CNN的滚动轴承智能复合故障诊断方法
滚动轴承
智能复合故障诊断
多小波变换
卷积神经网络
基于改进EEMD方法的轴承故障诊断研究
集合经验模态分解
极值波延拓
窗函数
端点效应
基于MSCNN与STFT的滚动轴承故障诊断研究
故障诊断
滚动轴承
多尺度卷积神经网络
短时傅里叶变换
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于全矢-CNN的轴承故障诊断研究
来源期刊
郑州大学学报(工学版)
学科
工学
关键词
故障诊断
全矢谱
深度学习
卷积神经网络
滚动轴承
年,卷(期)
2020,(5)
所属期刊栏目
机械工程
研究方向
页码范围
92-96
页数
5页
分类号
TH212|TH213.3
字数
语种
中文
DOI
10.13705/j.issn.1671-6833.2020.03.004
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
付耀琨
3
0
0.0
0.0
2
郝旺身
1
0
0.0
0.0
3
陈耀
1
0
0.0
0.0
4
孙浩
1
0
0.0
0.0
5
李伟
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(37)
共引文献
(138)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1998(1)
参考文献(0)
二级参考文献(1)
1999(1)
参考文献(0)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2006(3)
参考文献(0)
二级参考文献(3)
2007(1)
参考文献(0)
二级参考文献(1)
2008(2)
参考文献(0)
二级参考文献(2)
2009(3)
参考文献(0)
二级参考文献(3)
2010(3)
参考文献(0)
二级参考文献(3)
2011(2)
参考文献(0)
二级参考文献(2)
2012(2)
参考文献(0)
二级参考文献(2)
2013(4)
参考文献(1)
二级参考文献(3)
2014(6)
参考文献(0)
二级参考文献(6)
2015(7)
参考文献(3)
二级参考文献(4)
2016(4)
参考文献(2)
二级参考文献(2)
2017(3)
参考文献(1)
二级参考文献(2)
2018(2)
参考文献(1)
二级参考文献(1)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
全矢谱
深度学习
卷积神经网络
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
主办单位:
郑州大学
出版周期:
双月刊
ISSN:
1671-6833
CN:
41-1339/T
开本:
大16开
出版地:
河南省郑州市科学大道100号
邮发代号:
36-232
创刊时间:
1980
语种:
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
期刊文献
相关文献
1.
全矢深度学习在轴承故障诊断中的应用
2.
基于MWT和CNN的滚动轴承智能复合故障诊断方法
3.
基于改进EEMD方法的轴承故障诊断研究
4.
基于MSCNN与STFT的滚动轴承故障诊断研究
5.
基于小波分析的轴承故障诊断研究
6.
滚动轴承故障诊断研究
7.
多个低速重载轴承同轴安装状态下故障诊断方法研究
8.
矢Hilbert解调及其在齿轮故障诊断中的应用
9.
滑动轴承故障诊断实用诊断原则的研究
10.
基于改进深度卷积神经网络的轴承故障诊断
11.
基于EMD的滚动轴承故障诊断方法研究
12.
基于高阶累量谱的轴承故障诊断
13.
基于稳定分布参数估计的轴承故障诊断方法研究
14.
基于QPSO-SVM的轴承故障诊断方法
15.
基于特征选择与概率神经网络的轴承故障诊断研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
郑州大学学报(工学版)2022
郑州大学学报(工学版)2021
郑州大学学报(工学版)2020
郑州大学学报(工学版)2019
郑州大学学报(工学版)2018
郑州大学学报(工学版)2017
郑州大学学报(工学版)2016
郑州大学学报(工学版)2015
郑州大学学报(工学版)2014
郑州大学学报(工学版)2013
郑州大学学报(工学版)2012
郑州大学学报(工学版)2011
郑州大学学报(工学版)2010
郑州大学学报(工学版)2009
郑州大学学报(工学版)2008
郑州大学学报(工学版)2007
郑州大学学报(工学版)2006
郑州大学学报(工学版)2005
郑州大学学报(工学版)2004
郑州大学学报(工学版)2003
郑州大学学报(工学版)2002
郑州大学学报(工学版)2001
郑州大学学报(工学版)2000
郑州大学学报(工学版)1999
郑州大学学报(工学版)2020年第6期
郑州大学学报(工学版)2020年第5期
郑州大学学报(工学版)2020年第4期
郑州大学学报(工学版)2020年第3期
郑州大学学报(工学版)2020年第2期
郑州大学学报(工学版)2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号