基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大规模数据收集大幅提升了机器学习算法的性能,实现了经济效益和社会效益的共赢,但也令个人隐私保护面临更大的风险与挑战.机器学习的训练模式主要分为集中学习和联邦学习2类,前者在模型训练前需统一收集各方数据,尽管易于部署,却存在极大数据隐私与安全隐患;后者实现了将各方数据保留在本地的同时进行模型训练,但该方式目前正处于研究的起步阶段,无论在技术还是部署中仍面临诸多问题与挑战.现有的隐私保护技术研究大致分为2条主线,即以同态加密和安全多方计算为代表的加密方法和以差分隐私为代表的扰动方法,二者各有利弊.为综述当前机器学习的隐私问题,并对现有隐私保护研究工作进行梳理和总结,首先分别针对传统机器学习和深度学习2类情况,探讨集中学习下差分隐私保护的算法设计;之后概述联邦学习中存在的隐私问题及保护方法;最后总结目前隐私保护中面临的主要挑战,并着重指出隐私保护与模型可解释性研究、数据透明之间的问题与联系.
推荐文章
差分隐私保护研究综述
差分隐私
隐私保护
数据失真
数据挖掘
数据发布
社会网络的隐私保护研究综述
社会网络
互联网
隐私保护
攻击
物联网隐私保护研究与方法综述
物联网
隐私保护
匿名化
同态加密
安全多方计算
数据发布中的隐私保护研究综述
数据发布
隐私保护
匿名技术
信息度量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 机器学习的隐私保护研究综述
来源期刊 计算机研究与发展 学科 工学
关键词 隐私保护 差分隐私 机器学习 深度学习 联邦学习
年,卷(期) 2020,(2) 所属期刊栏目 隐私保护
研究方向 页码范围 346-362
页数 17页 分类号 TP391
字数 16893字 语种 中文
DOI 10.7544/issn1000-1239.2020.20190455
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟小峰 中国人民大学信息学院 135 6213 41.0 77.0
2 刘俊旭 中国人民大学信息学院 4 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (1782)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐私保护
差分隐私
机器学习
深度学习
联邦学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导