基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
磁共振成像(MRI)作为一种典型的非侵入式成像技术,可产生高质量的无损伤和无颅骨伪影的脑影像,为脑肿瘤的诊断和治疗提供更为全面的信息,是脑肿瘤诊疗的主要技术手段.MRI脑肿瘤自动分割利用计算机技术从多模态脑影像中自动将肿瘤区(坏死区、水肿区、非增强肿瘤区和增强肿瘤区)和正常组织区进行分割和标注,对于辅助脑肿瘤的诊疗具有重要作用.本文对MRI脑肿瘤图像分割的深度学习方法进行了总结与分析,给出了各类方法的基本思想、网络架构形式、代表性改进方案以及优缺点总结等,并给出了部分典型方法在BraTS(multimodal brain tumor segmentation)数据集上的性能表现与分析结果.通过对该领域研究方法进行综述,对现有基于深度学习的MRI脑肿瘤分割研究方法进行了梳理,作为新的发展方向,MRI脑肿瘤图像分割的深度学习方法较传统方法已取得明显的性能提升,已成为领域主流方法并持续展现出良好的发展前景,有助于进一步推动MRI脑肿瘤分割在临床诊疗上的应用.
推荐文章
基于深度学习算法的脑肿瘤CT图像特征分割技术改进
深度学习算法
脑肿瘤CT图像
特征分割技术
多模态3D-CNN
SAE结构
数据集
基于MRI的脑肿瘤分割技术研究进展
磁共振成像
脑肿瘤
医学图像分割
一种基于MRI图像的脑肿瘤组合分割法
医学图像分割
阈值分割
形态学分割
MRI
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MRI脑肿瘤图像分割的深度学习方法综述
来源期刊 中国图象图形学报 学科 工学
关键词 磁共振成像 脑肿瘤 人工神经网络 深度学习 分割
年,卷(期) 2020,(2) 所属期刊栏目 综述
研究方向 页码范围 215-228
页数 14页 分类号 TP391.7
字数 10818字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏小鹏 大连大学先进设计与智能计算省部共建教育部重点实验室 103 1445 18.0 34.0
3 张强 大连大学先进设计与智能计算省部共建教育部重点实验室 76 619 14.0 20.0
9 江宗康 大连大学先进设计与智能计算省部共建教育部重点实验室 1 0 0.0 0.0
10 吕晓钢 大连大学先进设计与智能计算省部共建教育部重点实验室 1 0 0.0 0.0
11 张建新 大连大学先进设计与智能计算省部共建教育部重点实验室 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (164)
共引文献  (134)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(3)
  • 参考文献(0)
  • 二级参考文献(3)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(5)
  • 参考文献(0)
  • 二级参考文献(5)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(5)
  • 参考文献(0)
  • 二级参考文献(5)
1991(4)
  • 参考文献(0)
  • 二级参考文献(4)
1992(5)
  • 参考文献(0)
  • 二级参考文献(5)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(6)
  • 参考文献(0)
  • 二级参考文献(6)
1996(7)
  • 参考文献(0)
  • 二级参考文献(7)
1997(9)
  • 参考文献(0)
  • 二级参考文献(9)
1998(13)
  • 参考文献(0)
  • 二级参考文献(13)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(11)
  • 参考文献(2)
  • 二级参考文献(9)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁共振成像
脑肿瘤
人工神经网络
深度学习
分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导