基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
轴承作为旋转机械的核心零部件,在工作过程中易受其他部件影响,造成多部件耦合振动,产生的故障信号呈现非线性、非平稳特征,使得与故障信息相关的周期性冲击成分混入大量的背景噪声.传统K-奇异值分解(K-SVD)在字典学习过程中易受噪声干扰,难以确定初始化字典和迭代次数,导致稀疏表示效果较差,无法有效地提取故障特征.针对以上问题,提出了基于改进的K-SVD和变分模态分解(VMD)的轴承故障特征提取方法.通过VMD对隐藏的故障特征进行提取,根据原始数据构造与故障冲击成分高度匹配的初始化字典,选用包络谱峭度作为K-SVD中迭代次数的判断准则,通过包络分析诊断故障类型.该方法成功应用于两个案例中,与传统K-SVD相比,在稀疏表示效果、故障提取能力和运行时间上均有优势.
推荐文章
基于随机共振和VMD分解的风电机组滚动轴承故障特征提取
风电机组
滚动轴承
随机共振
变分模态分解
故障诊断
基于参数优化VMD的齿轮箱故障特征提取方法
变分模态分解
参数优化
果蝇优化算法
齿轮箱
故障特征提取
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于改进EMD的滚动轴承故障增长特征提取和损伤评估技术
滚动轴承
损伤评估
经验模态分解
奇异值分量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的K-SVD和VMD的轴承故障特征提取方法
来源期刊 西安理工大学学报 学科 工学
关键词 稀疏表示 K-奇异值分解 变分模态分解 故障诊断
年,卷(期) 2020,(4) 所属期刊栏目 机械与精密仪器工程
研究方向 页码范围 551-556
页数 6页 分类号 TH17
字数 语种 中文
DOI 10.19322/j.cnki.issn.1006-4710.2020.04.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (9)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示
K-奇异值分解
变分模态分解
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安理工大学学报
季刊
1006-4710
61-1294/N
大16开
西安市金花南路5号
1978
chi
出版文献量(篇)
2223
总下载数(次)
6
论文1v1指导