基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高具有关联工单数据的录音文本的分类精确率,根据录音文本及关联数据的特点,设计基于深度学习的录音文本分类方法.针对录音文本,通过双向词嵌入语言模型(ELMo)获得录音文本及工单信息的向量化表示,基于获取的词向量,利用卷积神经网络(CNN)挖掘句子局部特征;使用CNN分别挖掘工单标题和工单的描述信息,将CNN输出的特征进行加权拼接后,输入双向门限循环单元(GRU),捕捉句子上下文语义特征;引入注意力机制,对GRU隐藏层的输出状态赋予不同的权重.实验结果表明,与已有算法相比,该分类方法的收敛速度快,具有更高的准确率.
推荐文章
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
基于SVM主动学习技术的 PU 文本分类
支持向量机
主动学习
PU
文本分类
Rocchio
基于重要事件的文本分类方法研究
文本分类
文本表示
重要事件
SVM
文本分类中的特征选择方法
文本分类
特征选择
评估函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的录音文本分类方法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 词向量 卷积神经网络(CNN) 双向门限循环单元 注意力 文本分类
年,卷(期) 2020,(7) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 1264-1271
页数 8页 分类号 TP391
字数 4464字 语种 中文
DOI 10.3785/j.issn.1008-973X.2020.07.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马严 北京邮电大学信息网络中心 98 731 15.0 23.0
2 黄小红 北京邮电大学信息网络中心 35 124 6.0 9.0
3 丛群 4 2 1.0 1.0
4 张彦楠 北京邮电大学信息网络中心 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (23)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
词向量
卷积神经网络(CNN)
双向门限循环单元
注意力
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导