基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高电力系统短期负荷预测的准确率,提出了一种基于深度学习技术的多尺度信息融合卷积神经网络(MS-ConvNet)模型.引入了全卷积网络结构和因果逻辑约束增强时间序列特征表达;利用多尺度卷积提取不同长度时域数据相互关系来获取更加丰富的序列特征;并设计残差网络结构增加网络深度,以增加输出神经元的接受域并提升预测精度.仿真结果表明,MS-Conv-Net模型的准确率及稳定性优于多层感知机、长短期记忆网络及门控循环单元网络,说明该模型在电力负荷预测方面具有良好的应用前景.
推荐文章
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于 BP 神经网络系统的短期电力负荷预测
电力负荷预测
神经网络
BP 算法
MATLAB
误差分析
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度卷积神经网络的短期电力负荷预测
来源期刊 沈阳工业大学学报 学科 工学
关键词 多尺度卷积 卷积神经网络 循环神经网络 时间序列 短期负荷预测 残差学习 全卷积 因果卷积
年,卷(期) 2020,(6) 所属期刊栏目 电气工程
研究方向 页码范围 618-623
页数 6页 分类号 TM73
字数 语种 中文
DOI 10.7688/j.issn.1000-1646.2020.06.04
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (26)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多尺度卷积
卷积神经网络
循环神经网络
时间序列
短期负荷预测
残差学习
全卷积
因果卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳工业大学学报
双月刊
1000-1646
21-1189/T
大16开
沈阳市铁西区南十三路1号
8-165
1964
chi
出版文献量(篇)
2983
总下载数(次)
5
总被引数(次)
22269
论文1v1指导