基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
金属圆柱工件的缺陷特征容易受到环境光影响,而使用传统卷积神经网络检测金属圆柱工件缺陷,存在网络参数多,运算量大和泛化能力低等问题,难以满足工业现场检测的实时性和高精度要求.针对这些问题,提出一种融入实例-批归一化网络(IBN-NET)的轻量网络模型.在轻量卷积神经网络SqueezeNext的基础上,加入增强泛化能力的IBN-NET,将浅层卷积层后的批标准化(BN)用一定比例的实例标准化(IN)替代,形成网络模型的基础模块;通过组合基础模块,形成改进的网络模型.实验采用具有5类金属圆柱工件缺陷的图像进行对比测试,结果表明,融入IBN-NET的改进网络模型拥有更高的泛化能力,在GTX1080显卡上,改进网络模型仅需0.58M参数量和5.54 ms的识别时间就能达到95.8%的识别精度.
推荐文章
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
基于轻量型U-net的钢材金相图像晶界分割方法
金相图像
晶界分割
浅层特征信息
轻量型
U-net
基于轻量型卷积神经网络的交通标志识别
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
金属圆柱工件缺陷的光电检测
金属圆柱工件
缺陷检测
线阵CCD
局部二元模式
局部图像方差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融入IBN-NET的轻量网络在金属圆柱工件缺陷识别中的应用
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 实例标准化 轻量网络 金属圆柱工件 缺陷识别
年,卷(期) 2020,(1) 所属期刊栏目 图像与视觉
研究方向 页码范围 112-120
页数 9页 分类号 TP391
字数 6284字 语种 中文
DOI 10.3724/SP.J.1089.2020.17722
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗钧 重庆大学光电技术及系统教育部重点实验室 69 943 15.0 28.0
2 曾伟 重庆大学光电技术及系统教育部重点实验室 7 55 3.0 7.0
3 侍宝玉 重庆大学光电技术及系统教育部重点实验室 5 20 2.0 4.0
4 龚燕峰 重庆大学光电技术及系统教育部重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (110)
共引文献  (476)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(3)
  • 参考文献(0)
  • 二级参考文献(3)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(15)
  • 参考文献(0)
  • 二级参考文献(15)
2016(22)
  • 参考文献(0)
  • 二级参考文献(22)
2017(19)
  • 参考文献(1)
  • 二级参考文献(18)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
实例标准化
轻量网络
金属圆柱工件
缺陷识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导