原文服务方: 计算技术与自动化       
摘要:
针对卷积神经网络在交通标志识别实时性不好,对设备硬件要求过高的缺点,提出了一种具有实时性,高精度的基于轻量型卷积神经网络的改进网络.一方面引入深度可分离卷积和激活函数Mish,加快网络的训练和识别速度,降低对硬件设备的要求;另一方面通过对网络架构及层次的改进,同时合理改变卷积核的大小和数目,加强图片特征的表达与传递.在BelgiumTSC交通标志数据集上的实验结果表明,改进后网络明显提高了网络训练速度,同时识别精度也略高于原网络,验证了改进方法的有效性.通过与其他模型相比,该模型能够更快速准确完成交通标志识别任务,验证了该方法的可行性.
推荐文章
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于优化的卷积神经网络在交通标志识别中的应用
卷积神经网络
非对称卷积
批量归一化
交通标志
梯度传输
分类精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轻量型卷积神经网络的交通标志识别
来源期刊 计算技术与自动化 学科
关键词 卷积神经网络 交通标识 图像增强 深度可分离卷积 激活函数
年,卷(期) 2020,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 112-118
页数 7页 分类号 TP183
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202004020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李茂军 56 528 12.0 21.0
2 张辉 27 270 9.0 15.0
3 龙曼仪 1 0 0.0 0.0
4 刘芾 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (14)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(7)
  • 参考文献(3)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导