原文服务方: 现代电子技术       
摘要:
为解决交通标志目标易受复杂环境影响且呈现多尺度分布,造成识别精度低的问题,构建一种多尺度卷积神经网络模型.针对不同尺寸输入设计相应的网络结构,提取目标特征,实现对不同尺寸目标的识别,再加权融合各子网络结果得到最终识别结果,实现多尺度目标识别.经实验验证分析,提出算法模型在小尺寸目标、较小尺寸目标、中尺寸目标、大尺寸目标上识别率分别达到99.12%,99.24%,99.41%,99.35%,保障了多尺度输入目标识别的鲁棒性,综合识别率可以达到99.31%,验证了算法在平衡实时性及准确率的基础上,具有一定的实用价值.
推荐文章
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于优化的卷积神经网络在交通标志识别中的应用
卷积神经网络
非对称卷积
批量归一化
交通标志
梯度传输
分类精度
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度卷积神经网络的交通标志识别方法
来源期刊 现代电子技术 学科
关键词 智能交通 深度学习 交通标志识别 多尺度目标识别 神经网络 加权融合
年,卷(期) 2019,(15) 所属期刊栏目 智能交通与导航
研究方向 页码范围 134-138,143
页数 6页 分类号 TN911.73-34|TP391.41
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.15.034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵祥模 长安大学信息工程学院 171 1125 16.0 25.0
2 刘占文 长安大学信息工程学院 17 90 5.0 9.0
3 沈超 长安大学信息工程学院 14 52 3.0 7.0
4 樊星 长安大学信息工程学院 3 3 1.0 1.0
5 徐江 长安大学信息工程学院 8 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (45)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能交通
深度学习
交通标志识别
多尺度目标识别
神经网络
加权融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导