基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前睡眠分期存在的依赖人工特征提取、无法识别长时关联数据中的时序模式、模型对EEG时序数据分期不准确等问题,提出一种基于CNN-BiLSTM的自动睡眠分期方法.将原始数据通过改进MSMOTE算法进行过采样形成类平衡数据,再通过CNN表达其高级特征,并馈送至BiLSTM中挖掘各睡眠阶段间的依赖关系,实现睡眠数据分期特征的自动学习和睡眠周期判定.在Sleep-EDF公开数据集上的实验结果表明,CNN-BiLSTM模型的分类准确率为92.21%.同时引入改进的MSMOTE过采样技术缓解因数据不平衡所导致的少数类睡眠期判定不准确问题.在原始数据集类不平衡的情况下,实现了睡眠数据自动分期,有效提高了睡眠分期模型的准确率,具有一定的实用价值.
推荐文章
基于CNN-BiLSTM的中文微博立场分析研究
自然语言处理
立场检测
词向量
卷积神经网络
双向长短时记忆网络
基于CNN-BiLSTM网络引入注意力模型的文本情感分析
卷积神经网络
CNN-BiLSTM
注意力机制
文本情感分析
基于能量特征和模糊熵的睡眠自动分期
睡眠自动分期
脑电
能量特征
模糊熵
支持向量机
基于蚁群优选的半监督主动协同睡眠分期方法研究
脑电信号
睡眠分期
蚁群算法
半监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN-BiLSTM的自动睡眠分期方法
来源期刊 北京理工大学学报 学科 工学
关键词 睡眠分期 类别不平衡 特征学习 卷积神经网络 长短时记忆网络
年,卷(期) 2020,(7) 所属期刊栏目 信息与控制
研究方向 页码范围 746-752
页数 7页 分类号 TP391
字数 4243字 语种 中文
DOI 10.15918/j.tbit1001-0645.2019.041
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗森林 北京理工大学信息与电子学院 121 821 14.0 23.0
2 潘丽敏 北京理工大学信息与电子学院 66 402 10.0 17.0
3 郝靖伟 北京理工大学信息与电子学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (1)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
睡眠分期
类别不平衡
特征学习
卷积神经网络
长短时记忆网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京理工大学学报
月刊
1001-0645
11-2596/T
大16开
北京海淀区中关村南大街5号
82-502
1956
chi
出版文献量(篇)
5642
总下载数(次)
13
总被引数(次)
57269
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导