原文服务方: 石油地球物理勘探       
摘要:
基于深度学习方法的地震相智能识别技术可以大幅度减少人工操作.现有深度学习方法的网络模型只能提取单一接收域下的目标特征,难以获取地震相在剖面上的全局空间分布信息,模型对少数类地震相的边界刻画效果较差,且缺乏对预测结果可靠程度进行评估的手段.针对这些问题,提出一种用于地震相分类识别的深度学习方法:在U-Net模型的末端加入金字塔池化模块以提高模型获取全局信息的能力;采用一种融合交叉熵与Dice指数的目标函数,改善不均衡数据中少数类地震相边界的刻画问题;提出“预测信息熵”的概念用于评估地震相预测结果的不确定性.该研究方法应用于F3工区地震相预测的实验结果表明:改进深度学习方法在地震相预测中具有更高的精度和更良好的边界刻画能力;同时,预测信息熵指标也能够较好地评价预测结果的不确定性.
推荐文章
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
面向人体行为识别的深度特征学习方法比较
深度学习
行为识别
序列数据分类
深度卷积神经网络
长短期时间记忆网络
基于改进深度置信网络的故障诊断方法
故障诊断
深度置信网络
特征提取
自适应谐振
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进深度学习方法的地震相智能识别
来源期刊 石油地球物理勘探 学科
关键词 地震相识别 深度学习 金字塔池化模块 不确定性评估
年,卷(期) 2020,(6) 所属期刊栏目 智能地球物理
研究方向 页码范围 1169-1177
页数 9页 分类号 P631
字数 语种 中文
DOI 10.13810/j.cnki.issn.1000-7210.2020.06.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗红梅 中国石化胜利油田分公司勘探开发研究院 10 85 5.0 9.0
2 闫星宇 中国石化胜利油田分公司勘探开发研究院 1 0 0.0 0.0
3 顾汉明 中国石化胜利油田分公司勘探开发研究院 2 1 1.0 1.0
4 闫有平 中国石化胜利油田分公司勘探开发研究院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (63)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(1)
  • 二级参考文献(0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
地震相识别
深度学习
金字塔池化模块
不确定性评估
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油地球物理勘探
双月刊
1000-7210
13-1095/TE
大16开
河北省涿州市11号信箱石油学会
1966-01-01
chi
出版文献量(篇)
3843
总下载数(次)
0
总被引数(次)
43529
论文1v1指导