基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展.语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解.目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标.本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标.然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足.本文在PASCAL VOC (pattern analysis,statistical modelling and computational learning visual object classes) 2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union).最后,指出了图像语义分割领域未来可能的热点方向.
推荐文章
卷积神经网络在医学图像分割中的研究进展
卷积神经网络
医学图像
图像分割
深度学习
综述
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
深度卷积神经网络在放射治疗计划图像分割中的应用
深度学习
卷积神经网络
医学影像分割
相似度系数
放射治疗
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度卷积神经网络图像语义分割研究进展
来源期刊 中国图象图形学报 学科 工学
关键词 语义分割 卷积神经网络 监督学习 弱监督学习
年,卷(期) 2020,(6) 所属期刊栏目 综述
研究方向 页码范围 1069-1090
页数 22页 分类号 TP391
字数 18717字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖创柏 北京工业大学信息学部 84 661 12.0 24.0
2 段娟 北京工业大学信息学部 15 165 4.0 12.0
3 禹晶 北京工业大学信息学部 21 218 7.0 14.0
4 青晨 北京工业大学信息学部 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (126)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语义分割
卷积神经网络
监督学习
弱监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导