作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的二部图推荐模型只考虑了用户和物品的历史交互行为.为了提供更加准确、多样和可解释的推荐,需要在用户物品交互式建模的基础上充分考虑标签辅助信息及权值的计算方式.文中提出了基于自然语言处理的标签相似性辅助边优化的推荐算法(LWV).该方法结合用户历史行为和标签辅助信息,通过word2vec在节点间生成新用于节点交互的边并构建边的权重,来更新基础推荐算法的推荐列表.最后,在公开数据集上对文中算法与基准算法在6个公共评测标准进行对比,实验结果表明,LWV更新过的推荐算法相比原算法在准确性、多样性和新颖性方面获得更好平衡.
推荐文章
基于标签的矩阵分解推荐算法
标签
矩阵分解
推荐算法
因子向量
基于标签优化的协同过滤推荐算法
标签
拓展近邻
协同过滤
基于用户标签的微博推荐算法
微博推荐算法
用户标签
TextRank排序方法
微博列表
效应函数
生命周期
基于标签分类的协同过滤推荐算法
协同过滤
矩阵分解
交替最小二乘法
迭代投影寻踪
监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标签辅助边优化的推荐算法
来源期刊 重庆大学学报 学科 工学
关键词 推荐 自然语言处理 word2vec 标签 辅助信息
年,卷(期) 2020,(11) 所属期刊栏目
研究方向 页码范围 52-62
页数 11页 分类号 TP181
字数 语种 中文
DOI 10.11835/j.issn.1000-582X.2020.11.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡彪 10 11 2.0 3.0
2 陈润 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐
自然语言处理
word2vec
标签
辅助信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
论文1v1指导