基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
有刀具状态监测的加工生产既能提高加工效率又能降低生产成本,是智能制造生产的关键.近几年深度学习成为研究刀具磨损问题的主流算法.提出一种基于VGG-19卷积神经网络的刀具磨损监测方法,该方法应用小波包变换对振动信号进行处理并提取能量图,应用VGG-19卷积神经网络预测刀具磨损状态.结果表明,适当增加网络层数,可以学习更多数据特征并得到更好的预测表现;与其他卷积神经网络相比,VGG-19层数适合,预测准确率稳定,损失函数值最小,该方法对刀具磨损类型的预测表现最好.
推荐文章
基于改进的VGG-16卷积神经网络的肺结节检测
肺结节
VGG-16
极限学习机
卷积神经网络
基于细胞神经网络刀具磨损图像处理的研究
细胞神经网络
图像处理
刀具磨损
基于小波神经网络监测刀具状态的研究
神经网络
小波分析
刀具监测
振动信号
AE信号
基于VGG-16卷积神经网络的水稻害虫智能识别研究
水稻
害虫
智能识别
VGG-16
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VGG-19卷积神经网络的刀具磨损监测方法
来源期刊 机械设计与制造工程 学科 工学
关键词 刀具磨损监测 卷积神经网络 小波包变换
年,卷(期) 2020,(6) 所属期刊栏目 应用研究
研究方向 页码范围 93-97
页数 5页 分类号 TH165+.3|TP183
字数 3610字 语种 中文
DOI 10.3969/j.issn.2095-509X.2020.06.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭保苏 燕山大学机械工程学院 10 22 3.0 4.0
3 李正官 1 0 0.0 0.0
4 韩天杰 燕山大学机械工程学院 1 0 0.0 0.0
5 王超群 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (12)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(14)
  • 参考文献(1)
  • 二级参考文献(13)
2018(7)
  • 参考文献(0)
  • 二级参考文献(7)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
刀具磨损监测
卷积神经网络
小波包变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造工程
月刊
2095-509X
32-1838/TH
大16开
南京市长虹路445号
28-220
1964
chi
出版文献量(篇)
9471
总下载数(次)
10
总被引数(次)
36304
论文1v1指导