基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法.首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;然后利用贝塞尔曲线拟合无意调相,降低噪声的影响,获得无意调相更为精确的描述;最后利用长短时记忆加全卷积网络提取无意调相序列的联合特征,实现雷达辐射源个体自动识别.仿真实验以及实测数据实验均验证了所提算法的可行性与有效性,实验结果表明,所提算法识别正确率高、耗时短.
推荐文章
基于Chirp原子的雷达辐射源信号无意调制特征提取
雷达辐射源
无意调制
特征提取
相位噪声
匹配追踪
基于调频指数特征的通信辐射源个体识别
辐射源个体识别
调频辐射源
调频指数
特征鲁棒性
基于核函数支持向量机的雷达辐射源识别
雷达辐射源识别
核函数
支持向量机
基于时频与快速熵的IFF辐射源个体识别方法
敌我识别
辐射源个体识别
时频分析
样本熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于无意调相特性的雷达辐射源个体识别
来源期刊 通信学报 学科 工学
关键词 雷达辐射源个体识别 无意调相 贝塞尔曲线 深度学习 长短时记忆加全卷积网络
年,卷(期) 2020,(5) 所属期刊栏目 学术论文
研究方向 页码范围 104-111
页数 8页 分类号 TN971.+1
字数 4524字 语种 中文
DOI 10.11959/j.issn.1000-436x.2020084
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王建涛 信息工程大学数据与目标工程学院 13 127 5.0 11.0
2 黄洁 信息工程大学数据与目标工程学院 21 111 6.0 10.0
3 陈世文 信息工程大学数据与目标工程学院 4 7 2.0 2.0
4 秦鑫 信息工程大学数据与目标工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (14)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(8)
  • 参考文献(6)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
雷达辐射源个体识别
无意调相
贝塞尔曲线
深度学习
长短时记忆加全卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导