基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
三维目标识别和模型语义分割在自动驾驶、机器人导航、3D打印和智能交通等领域均有着广泛应用.针对PointNet++未能结合三维模型的上下文几何结构信息的问题,提出一种采用深度级联卷积神经网络的三维点云识别与分割方法.首先,通过构建深度动态图卷积神经网络捕捉点云的深层语义几何特征;其次,通过将深度动态图卷积神经网络作为深度级联卷积神经网络的子网络递归地应用于输入点集的嵌套分区,以充分挖掘三维模型的深层细粒度几何特征;最后,针对点集特征学习中的点云采样不均匀问题,构建一种密度自适应层,利用循环神经网络编码每个采样点的多尺度邻域特征以捕捉上下文细粒度几何特征.实验结果表明,本算法在三维目标识别数据集ModelNet40和MoelNet10上的识别准确率分别为91.9%和94.3%,在语义分割数据集ShapeNet Part,S3DIS和vKITTI上的平均交并比分别为85.6%,58.3%和38.6%.该算法能够提高三维点云目标识别和模型语义分割的准确率,且具有较高的鲁棒性.
推荐文章
基于级联式三维卷积神经网络的肝肿瘤自动分割
肝肿瘤
自动分割
级联式卷积神经网络
残差结构
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
基于图像分割的三维点云深度值合成
三维重建
点云
分割
超像素
深度值合成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用深度级联卷积神经网络的三维点云识别与分割
来源期刊 光学精密工程 学科 工学
关键词 三维点云 目标识别 语义分割 卷积神经网络 循环神经网络
年,卷(期) 2020,(5) 所属期刊栏目 信息科学
研究方向 页码范围 1187-1199
页数 13页 分类号 TP391
字数 5925字 语种 中文
DOI 10.3788/OPE.20202805.1187
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨军 兰州交通大学电子与信息工程学院 71 349 10.0 15.0
2 党吉圣 兰州交通大学电子与信息工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (31)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(22)
  • 参考文献(0)
  • 二级参考文献(22)
2018(10)
  • 参考文献(1)
  • 二级参考文献(9)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三维点云
目标识别
语义分割
卷积神经网络
循环神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
论文1v1指导