基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
极限学习机(ELM)作为一种无监督分类方法,具有学习速度快、泛化性能高、逼近能力好的优点.随着无监督学习的发展,将ELM与自动编码器集成已成为无标签数据集提取特征的新视角,如极限学习机自动编码器(ELM-AE)是一种无监督的神经网络,无需迭代即可找到代表原始样本和其学习过程的主要成分.其重建输入信号获取原始样本的主要特征,且考虑了原始数据的全局信息以避免信息的丢失,然而这类方法未考虑数据的固有流形结构即样本间的近邻结构关系.借鉴极限学习机自动编码器的思想,提出了一种基于流形的极限学习机自动编码器算法(M-ELM).该算法是一种非线性无监督特征提取方法,结合流形学习保持数据的局部信息,且在特征提取过程中同时对相似度矩阵进行学习.通过在IRIS数据集、脑电数据集和基因表达数据集上进行实验,将该算法与其他无监督学习方法PCA、LPP、NPE、LE和ELM-AE算法经过k-means聚类后的准确率进行了比较,以表明该算法的有效性.
推荐文章
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于深度自编码的局部增强属性网络表示学习
网络表示
深度自编码器
属性网络
局部增强网络表示
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
在线增量极限学习机及其性能研究
极限学习机
增量学习
在线学习
广义逆
在线增量极限学习机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 流形极限学习机自编码特征表示
来源期刊 计算机工程与应用 学科 工学
关键词 极限学习机 极限学习机自动编码器 流形学习 无监督学习 特征提取
年,卷(期) 2020,(17) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 150-155
页数 6页 分类号 TP311|TP371
字数 4819字 语种 中文
DOI 10.3778/j.issn.1002-8331.2006-0007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓云 福州大学数学与计算机科学学院 76 590 13.0 21.0
2 陈媛 福州大学数学与计算机科学学院 6 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (4)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极限学习机
极限学习机自动编码器
流形学习
无监督学习
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
福建省自然科学基金
英文译名:Natural Science Foundation of Fujian Province of China
官方网址:http://www.fjinfo.gov.cn/fz/zrjj.htm
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导