原文服务方: 计算机应用研究       
摘要:
基于深度自编码器的网络表示,可以捕获高度非线性的网络结构,但当链接稀疏时学到的表示不够准确.针对这一问题,提出一种基于深度自编码的局部增强属性网络表示学习模型,以提高表示学习的准确度.该模型首先利用链接与属性特征,采用多个深度自编码器,学习保持网络拓扑结构及属性特征的低维网络表示.之后,基于节点间近邻结构及属性相似性,对学出的低维网络表示进行节点约束,实现网络局部结构增强,达到最大程度保持原始结构信息及属性特征的目的 .在五个真实属性网络上的实验结果表明,提出的模型在聚类与分类任务中,效果均优于目前流行的表示学习方法.
推荐文章
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
融合TDA的深度自编码网络车辆目标检测
交通监控
目标检测
点云区域生长分割
拓扑数据分析
层次聚类
深度自编码网络
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
基于自编码神经网络建立的搜索信息模型
文本特征
自编码神经网络
深度学习
Matlab
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度自编码的局部增强属性网络表示学习
来源期刊 计算机应用研究 学科
关键词 网络表示 深度自编码器 属性网络 局部增强网络表示
年,卷(期) 2020,(9) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2610-2614
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.04.0126
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 柴变芳 14 17 2.0 3.0
2 陈嶷瑛 10 27 2.0 4.0
3 张珊珊 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (7)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络表示
深度自编码器
属性网络
局部增强网络表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导