钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机科学与探索期刊
\
改进的卷积神经网络在肺部图像上的分割应用
改进的卷积神经网络在肺部图像上的分割应用
作者:
宋威
肖志勇
钱宝鑫
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
CT图像
肺实质
医学图像分割
深度学习
摘要:
CT成像技术是辅助医生诊断肺部疾病的重要手段.针对肺部各组织结构复杂,难以准确地对肺部CT图像中肺实质进行分割和提取的问题,提出了一种编/解码模式的肺分割算法.为了获得图像的多尺度信息,首先向网络模型中输入多尺度图像,使用残差网络结构作为编码模块,在扩展网络深度的同时不造成网络退化问题;此外,在编码和解码之间利用空洞空间金字塔池化(ASPP)充分提取上文多尺度信息;最后利用级联操作,将捕捉到的信息与编码层信息级联,结合注意力机制从而提高分割精度.通过对LUNA16数据集中89位患者的13465张CT图像进行测试,以相似性系数和精确度作为主要评判标准,实验精度分别达到了99.56%和99.33%.实验结果表明,该方法能有效分割出肺实质区域,与其他网络相比分割效果更好.
暂无资源
收藏
引用
分享
推荐文章
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
深度卷积神经网络在放射治疗计划图像分割中的应用
深度学习
卷积神经网络
医学影像分割
相似度系数
放射治疗
结合卷积神经网络和超像素聚类的细胞图像分割方法
细胞分割
卷积神经网络
超像素聚类
染色校正
乳腺细胞图像
基于3D卷积神经网络的脑肿瘤医学图像分割优化
脑肿瘤
医学图像分割
多模态MRI
差异信息提取
多尺度采样
3D卷积神经网络
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
改进的卷积神经网络在肺部图像上的分割应用
来源期刊
计算机科学与探索
学科
工学
关键词
CT图像
肺实质
医学图像分割
深度学习
年,卷(期)
2020,(8)
所属期刊栏目
图形图像
研究方向
页码范围
1358-1367
页数
10页
分类号
TP391.41
字数
6470字
语种
中文
DOI
10.3778/j.issn.1673-9418.2001042
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
宋威
江南大学人工智能与计算机学院
44
158
8.0
10.0
2
肖志勇
江南大学人工智能与计算机学院
9
24
3.0
4.0
3
钱宝鑫
江南大学人工智能与计算机学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(6)
共引文献
(9)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1992(1)
参考文献(0)
二级参考文献(1)
1994(1)
参考文献(1)
二级参考文献(0)
2001(1)
参考文献(1)
二级参考文献(0)
2003(1)
参考文献(0)
二级参考文献(1)
2007(1)
参考文献(0)
二级参考文献(1)
2009(2)
参考文献(0)
二级参考文献(2)
2011(1)
参考文献(0)
二级参考文献(1)
2012(1)
参考文献(1)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
2019(2)
参考文献(2)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
CT图像
肺实质
医学图像分割
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
主办单位:
华北计算技术研究所
出版周期:
月刊
ISSN:
1673-9418
CN:
11-5602/TP
开本:
大16开
出版地:
北京市海淀区北四环中路211号北京619信箱26分箱
邮发代号:
82-560
创刊时间:
2007
语种:
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
期刊文献
相关文献
1.
基于卷积神经网络改进的图像自动分割方法
2.
深度卷积神经网络在放射治疗计划图像分割中的应用
3.
结合卷积神经网络和超像素聚类的细胞图像分割方法
4.
基于3D卷积神经网络的脑肿瘤医学图像分割优化
5.
卷积神经网络在医学图像分割中的研究进展
6.
基于改进BP神经网络的白细胞图像分割
7.
基于改进神经网络的图像边缘分割技术
8.
基于改进卷积神经网络的手势识别
9.
基于深度卷积神经网络的图像检索算法研究
10.
基于滑动块的深度卷积神经网络乳腺X线摄影图像肿块分割算法
11.
基于改进遗传神经网络的MR脑组织图像分割方法
12.
基于2.5D级联卷积神经网络的CT图像胰腺分割方法
13.
基于改进型脉冲耦合神经网络的图像分割方法
14.
基于U-Net卷积神经网络的轮毂缺陷分割
15.
BP神经网络在眼底造影图像分割中的应用
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机科学与探索2022
计算机科学与探索2021
计算机科学与探索2020
计算机科学与探索2019
计算机科学与探索2018
计算机科学与探索2017
计算机科学与探索2016
计算机科学与探索2015
计算机科学与探索2014
计算机科学与探索2013
计算机科学与探索2012
计算机科学与探索2011
计算机科学与探索2010
计算机科学与探索2009
计算机科学与探索2008
计算机科学与探索2007
计算机科学与探索2020年第9期
计算机科学与探索2020年第8期
计算机科学与探索2020年第7期
计算机科学与探索2020年第6期
计算机科学与探索2020年第5期
计算机科学与探索2020年第4期
计算机科学与探索2020年第3期
计算机科学与探索2020年第2期
计算机科学与探索2020年第12期
计算机科学与探索2020年第11期
计算机科学与探索2020年第10期
计算机科学与探索2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号