基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对棉花异性纤维检测准确率不高、实时性较差的问题,以棉花为研究对象,提出了一种基于改进YOLOv3的棉花异性纤维检测方法.引入轻量级MobileNets网络为特征提取网络,结合YOLOv3的多尺度特征融合检测网络,构建改进的MobileNets-YOLOv3模型.提出一种分段式学习率,以增强学习效果.将实际采集到的真实棉花异性纤维图像数据集按4∶1的比例划分为训练集和测试集,并使用对比度增强、水平镜像等6种图像增广方法扩充数据集.对扩充前后的数据集、不同的学习率、改进前后的YOLOv3模型、本文模型与Faster R-CNN和SSD 300模型做了对比试验.实验结果表明,数据集的增广、改进后的分段式学习率均能改善训练模型的过拟合现象,在测试集上的平均正确率(mAP)分别提高了3.6%、5.64%;改进后的YOLOv3模型对测试集进行检测的平均正确率(mAP)为84.82%,帧速率为66.67 f·s-1,识别精度优于YOLOv3模型,提高了2.03%,帧速率是YOLOv3模型的3倍,总体性能也优于Faster R-CNN和SSD_300模型,能较好地满足棉花异纤检测的精度和实时性要求.
推荐文章
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv3的棉花异性纤维检测
来源期刊 液晶与显示 学科 工学
关键词 棉花 目标检测 YOLOv3网络 MobileNets网络 深度学习
年,卷(期) 2020,(11) 所属期刊栏目 图像处理
研究方向 页码范围 1195-1203
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.37188/YJYXS20203511.1195
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (57)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(16)
  • 参考文献(0)
  • 二级参考文献(16)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
棉花
目标检测
YOLOv3网络
MobileNets网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
论文1v1指导