基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统方法在对高维稀疏数据进行检测的过程中,受到高维特征扰动的影响,数据误差较大,因此提出一种基于深度学习的高维稀疏数据组合推荐算法.采用相空间重构方法进行高维稀疏数据的特征重构,根据重构结果结合非线性统计序列分析方法进行高维稀疏数据的回归分析和点云结构重组,在此基础上提取高维稀疏数据的组合特征量;依据特征量提取结果采用特征提取技术抽取高维稀疏数据的平均互信息特征量,并结合关联规则挖掘方法进行高维稀疏数据的主成分分析,挖掘高维稀疏数据的相似度属性类别成分,最终采用深度学习方法进行高维稀疏数据组合推荐过程中的自适应寻优,实现高维稀疏数据的组合推荐.仿真结果表明,采用该算法进行高维稀疏数据推荐的属性归类辨识性较好,特征分辨能力较强,提高了数据的检测和识别能力.
推荐文章
基于MLP改进型深度神经网络学习资源推荐算法
学习资源推荐
深度学习
卷积神经网络
word2vec
多层感知机
一种基于稀疏分段的协同过滤推荐算法
稀疏分段
支持向量回归
基于项目的推荐
协同过滤
数据稀疏性
小样本
融合元数据及attention机制的深度联合学习推荐
元数据
属性权重
attention机制
深度联合学习
非线性分解
基于策略记忆的深度强化学习序列推荐算法研究
推荐系统
强化学习
策略网络
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的高维稀疏数据组合推荐算法
来源期刊 计算机技术与发展 学科 工学
关键词 深度学习 高维稀疏数据 组合推荐 特征提取 挖掘
年,卷(期) 2020,(2) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 104-108
页数 5页 分类号 TP391
字数 3123字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.02.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李东 哈尔滨工业大学计算机科学与技术学院 109 975 16.0 27.0
2 李晓峰 黑龙江外国语学院信息工程系 20 30 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (184)
共引文献  (158)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(18)
  • 参考文献(0)
  • 二级参考文献(18)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(20)
  • 参考文献(0)
  • 二级参考文献(20)
2015(14)
  • 参考文献(0)
  • 二级参考文献(14)
2016(25)
  • 参考文献(3)
  • 二级参考文献(22)
2017(27)
  • 参考文献(6)
  • 二级参考文献(21)
2018(8)
  • 参考文献(7)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
高维稀疏数据
组合推荐
特征提取
挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导