基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
地震数据重建是一个不适定的反问题,通常采用正则化方法求解.正则化方法需要人工建模,建模的准确性会影响重建结果,此类方法还存在计算代价高的问题.为克服正则化方法存在的问题,本文使用深度卷积神经网络实现了端到端的地震数据重建.此方法是基于数据驱动的,直接从数据中学习输入与输出的映射关系,无需人工建模,经过训练的网络可直接用于非完整数据的重建工作.数值实验分别使用模拟数据和实际数据并与传统正则化方法对比验证深度卷积神经网络方法的有效性.实验结果表明,深度卷积神经网络方法的计算代价主要在于网络的训练阶段,数据重建阶段仅需花费极短的时间,与传统正则化方法相比,对于缺道50%的地震数据,深度卷积神经网络方法的重建结果质量更高,速度更快.
推荐文章
基于数据驱动的卷积神经网络电容层析成像图像重建
卷积神经网络
电容层析成像
图像重建
颗粒浓度分布
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络重建十二导联心电图
心电图
卷积神经网络
自编码器
矢量心电图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的地震数据重建
来源期刊 地球物理学进展 学科 地球科学
关键词 地震数据重建 反问题 正则化方法 深度卷积神经网络
年,卷(期) 2020,(4) 所属期刊栏目 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探)
研究方向 页码范围 1497-1506
页数 10页 分类号 P631
字数 语种 中文
DOI 10.6038/pg2020DD0525
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟凡顺 41 237 10.0 14.0
2 王璐 41 186 8.0 12.0
3 杨冠雨 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (31)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(6)
  • 参考文献(3)
  • 二级参考文献(3)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
地震数据重建
反问题
正则化方法
深度卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球物理学进展
双月刊
1004-2903
11-2982/P
大16开
北京市9825信箱(朝阳区北土城西路19号中科院地质与地球物理研究所) 质与地球物理研究所办公楼113号)
1986
chi
出版文献量(篇)
5468
总下载数(次)
11
总被引数(次)
68508
论文1v1指导