基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 X射线光片是用于诊断多种胸部疾病常用且经济的方法.然而,不同疾病的位置及病灶区域大小在X光片上差异较大且纹理表现存在多样性,是胸部疾病分类任务面临的主要挑战.此外,样本数据类别不平衡进一步增加了任务的困难.针对以上挑战以及目前算法识别精度有待提升的问题,本文采用深度学习方法提出一种基于密集挤压激励网络的多标签胸部疾病分类算法.方法 将挤压激励模块同样以密集连接的方式加入密集连接网络中作为特征通道高度注意模块,以增强对于网络正确判断疾病有用信息的传递同时抑制无用信息的传递;使用非对称卷积块增强网络的特征提取能力;采用焦点损失函数,增加难识别疾病的损失权重而减小易识别疾病的损失权重,以增强网络对难识别样本的学习.结果 在ChestX-ray14数据集上的实验结果表明,本文算法对14种胸部疾病的分类精度较目前3种经典及先进算法有所提升,平均AUC(area under ROC curve)值达到0.802.另外本文将算法模型在诊断时依据的病灶区域进行可视化,其结果进一步证明了模型的有效性.结论 本文提出的基于密集挤压激励网络的多标签分类算法,在胸部疾病识别上的平均AUC值较高,适用于胸部X光片的疾病分类.
推荐文章
标签相关的多标签分类算法
离散化
贝叶斯网
朴素贝叶斯分类器
多标签学习
基于多标签分类的传感器网络数据故障检测算法
传感器网络
数据故障
多标签分类
ReliefF
遗传算法
基于标签相似度的不良信息多标签分类方法
多标签分类
标签之间的相关关系
不良信息
中心标签
标签相似度系数矩阵
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 密集挤压激励网络的多标签胸部X光片疾病分类
来源期刊 中国图象图形学报 学科 工学
关键词 胸部X光片 多标签分类 密集连接网络 疾病诊断 医学图像处理
年,卷(期) 2020,(10) 所属期刊栏目 研究应用
研究方向 页码范围 2238-2248
页数 11页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (2)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
胸部X光片
多标签分类
密集连接网络
疾病诊断
医学图像处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导