基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
论文研究基于神经网络的股票预测方法,针对目前存在的问题,通过模糊理论与动态神经网络的结合提出一种更为适合现状的动态模糊神经网络DFNN(Dynamic Fuzzy Neural Network)股票预测模型.首先对采集的股票信息进行属性提取,然后利用粗糙集理论中的信息熵算法进行属性约简、删减冗余信息,最后用约简后的数据作为动态模糊神经网络的输入属性进行训练预测,并在算法模型中运用分级学习的思想,能在一定程度上实现预测某一只股票短期内大致走势的功能.实际操作中更能为股票的多重选择进行推荐,降低投资的风险,有着较高的实用性.
推荐文章
基于粗糙集模糊神经网络的爆破振动危害预测
爆炸力学
危害预测
粗糙集
爆破振动
模糊神经网络
基于粗糙集理论的模糊神经网络构造方法
粗糙集
模糊神经网络
隶属函数
离散化
基于粗糙集神经网络的燃煤发热量预测模型
粗糙集
约简
神经网络
发热量
基于粗糙集和神经网络的数据融合方法研究
粗糙集
神经网络
BP算法
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗糙集和动态模糊神经网络的股市预测研究
来源期刊 计算机与数字工程 学科 工学
关键词 股票预测 粗糙集理论 信息熵 动态模糊神经网络 分级学习
年,卷(期) 2020,(3) 所属期刊栏目 算法与分析
研究方向 页码范围 517-522
页数 6页 分类号 TP183
字数 5168字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.03.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王峥 9 18 3.0 3.0
2 温光洒 1 0 0.0 0.0
6 邱秀连 8 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (35)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1952(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
股票预测
粗糙集理论
信息熵
动态模糊神经网络
分级学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导